Report Highlights
The global bioplastic demand totaled 1.1 million metric tons in 2013. This is expected to reach 1.4 million metric tons in 2014 and about 6 million metric tons in 2019, a compound annual growth rate (CAGR) of 32.7% for the five-year period, 2014 to 2019.
Report Includes
- An overview of the global market for bioplastics.
- Analyses of global market trends with data from 2012 and 2013, estimates for 2014, and projections of CAGRs through 2019.
- Identification of trends that will affect the use of bioplastics and their major end-use application markets.
- Information on specific end markets for bioplastics by material types, with sections devoted to each type of renewably sourced plastic.
- Analysis of market developments regarding major applications for bioplastics, including packaging, automotive, electrical/electronic, medical, building and construction.
SCOPE AND FORMAT
The focus of this report is on plastics made from renewable resources such as biomass or food crops. There is even some potential development of bioplastics from animal resources. Plastics that may be potentially made from waste carbon dioxide are reviewed because of their potential impact on bioplastics, but their data is not included in the forecasts presented here. Bioplastics are further defined here as polymer materials that are produced by synthesizing—chemically or biologically—materials that contain renewable organic materials. Natural organic materials that are not chemically modified (e.g., wood composites) are excluded. The report includes the use of renewable resources to create monomers that replace petroleum-based monomers, such as feedstocks made from sugarcane that are used to manufacture polyester and polyethylene. Ethanol, a major product in Brazil, is one small chemical step from ethylene.
The focal point is on the following resin chemistries:
- Polylactic acid.
- Thermoplastic starch.
- Biopolyamides (nylons).
- Polyhydroxyalkanoates (PHA).
- Biopolyols and polyurethane.
- Cellulosics.
- Biopolytrimethylene terephthalate (PTT).
- Biopolyethylene.
- Biopolyethylene terephthalate (PET).
- Polybutylene Succinate (PBS).
Biodegradable and photodegradable polymers made from petrochemical feedstocks are not included. Other renewable resin chemistries are also covered but in less detail, as their roles are not as well developed. These include collagen and chitosan.
Analyst Credentials
Jason Chen has been an analyst and consultant for the polymer, composite, fiber, textile and energy industries for 18 years. He works as a researcher, writer and/or editor for the American Composites Manufacturers Association (ACMA), China Textile Academy (CTA), China Chemical Fiber Association (CCFA), International Fiber Journal, Filtration News, Platts Emission Daily, Vision Systems Design, Pesticide and Toxic Chemical News and MobileTex. Currently he is the chief scientist of a company endeavoring to reduce China's air and water pollution. He has a degree in Civil Engineering, Chemicals and Advanced Materials from Shantou University.
Report Highlights
The global use of bioplastics was 0.64 million metric tons in 2010 and 0.85 million metric tons in 2011. BCC expects that the use of bioplastics will increase up to 3.7 million metric tons by 2016, a compound annual growth rate (CAGR) of 34.3%.
Report Highlights
-
Bioplastics will grow at a significant pace over the next 5 years. The total worldwide use of bioplastics is valued at 571,712 metric tons in 2010. This usage is expected to grow at a 41.4% compound annual growth rate (CAGR) from 2010 through 2015, to reach 3,230,660 metric tons in 2015.
-
By 2010, ready access to crops such as soybeans, corn, and sugarcane moved the United States strongly into bioplastics. North American usage is estimated at 258,180 metric tons in 2010 and is expected to increase at a 41.4% compound annual growth rate (CAGR) to reach 1,459,040 metric tons in 2015.
-
Use of bioplastics got off to a faster start in Europe than in the United States. European usage is now reported at 175,320 metric tons in 2010 and is expected to increase at a 33.9% compound annual growth rate (CAGR) to reach 753,760 metric tons in 2015.
Recent Reports
Biodegradable Polymers: Global Markets and Technologies
The global market volumes of biodegradable polymers is expected to grow from 1,286.0 kilotons in 2023 and is projected to reach 4,140.0 kilotons by the end of 2028, at a compound annual growth rate (CAGR) of 26.3% during the forecast period of 2023 to 2028.
Global Market for Plastics Compounding
The global market for plastic compounding is estimated to increase from $57.8 billion in 2023 to reach $80.3 billion by 2029, at a compound annual growth rate (CAGR) of 5.8% from 2024 through 2029.
Plastics Recycling: Global Markets
The global market for plastic recycling is expected to grow from $42.4 billion in 2024 to $57.9 billion by the end of 2029, at a compound annual growth rate (CAGR) of 6.4% from 2024 to 2029.
Liquid Crystal Polymers: Global Markets
The global market for liquid crystal polymers is expected to grow from $957.5 million in 2023 to $1.3 billion by the end of 2028, at a compound annual growth rate (CAGR) of 6.1% from 2023 through 2028.
Plastics for Healthcare Packaging
The global market value of plastics for healthcare packaging is expected to grow from $32.1 billion in 2023 and should reach $46.1 billion by the end of 2028, at a compound annual growth rate (CAGR) of 7.5% during the forecast period of 2023 to 2028.
Become A Member
BCC Research offers a comprehensive library of reports, granting members unlimited access to data, insights, and market intelligence for informed business decisions, while actively supporting members in their evolving journeys and prioritizing high-quality, relevant topics based on continuous engagement with the research community.
Find Out MoreCustom Consulting
BCC Research emphasizes the importance of organizations leveraging highly customized market insights aligned with specific strategic business objectives through direct engagement with primary sources and proprietary forecasting models for profitable decision-making in maximizing growth opportunities and minimizing risks.
Customize NowScorecard
The Venture Scorecard provides commercialization offices and decision makers with expert analysis, offering strategic insights crucial for aligning objectives with market realities at various stages of commercializing new products or evaluating investment opportunities, from opportunity assessment to growth planning.
Find Out MoreInnovation Spotlight
Our industry experts offer strategic guidance to maximize the market potential of commercialized products, patents, and IP by providing insights into market trends, competitive dynamics, and effective positioning, using the Innovation Spotlight service for enhanced exposure to thought leaders and the wider community.
Find Out More